Homothetic interval orders
نویسندگان
چکیده
We give a characterization of the non-empty binary relations  on a N∗-set A such that there exist two morphisms of N∗-sets u1, u2 : A → R+ verifying u1 ≤ u2 and x  y ⇔ u1(x) > u2(y). They are called homothetic interval orders. If  is a homothetic interval order, we also give a representation of  in terms of one morphism of N∗-sets u : A → R+ and a map σ : u(R+) × A → R+ such that x  y ⇔ σ(x, y)u(x) > u(y). The pairs (u1, u2) and (u, σ) are “uniquely” determined by Â, which allows us to recover one from each other. We prove that  is a semiorder (resp. a weak order) if and only if σ is a constant map (resp. σ = 1). If moreover A is endowed with a structure of commutative semigroup, we give a characterization of the homothetic interval orders  represented by a pair (u,σ) so that u is a morphism of semigroups. Résumé On donne une caractérisation des relations binaires non vides  sur un N∗-ensemble A telles qu’il existe deux morphismes de N∗-ensembles u1, u2 : A → R+ vérifiant u1 ≤ u2 et x  y ⇔ u1(x) > u2(y). On les appelle des ordres intervalles homothétiques. Si  est un ordre intervalle homothétique, on donne aussi une représentation de  à l’aide d’un morphisme de N∗-ensembles u : A → R+ et d’une application σ : u(R+)× A → R+ tels que x  y ⇔ σ(x, y)u(x) > u(y). Les paires (u1, u2) et (u,σ) sont déterminées “de manière unique” par Â, ce qui nous permet de retrouver l’une à partir de l’autre. On montre que  est un semiordre (resp. un ordre faible) si et seulement si σ est une application constante (resp. σ = 1). Si de plus A est muni d’une structure de semigroupe commutatif, on donne une caractérisation des ordres intervalles homothétiques  représentés par une paire (u,σ) telle que u soit un morphisme de semigroupes. AMS Class. 06A06, 06F05, 20M14 Key-words N∗-set, semigroup, weak order, semiorder, interval order, intransitive indifference, independence, homothetic structure, representation. Introduction Let us start with an example, which has been our main source of inspiration for this work. Consider a two-armed-balance, the two arms of which not necessarily being of the same length; such a balance is said to be biased. Let denote P1 and P2 its two pans. If the arms are not of the same length, we assume that P1 is located at the end of the shortest arm. Suppose also we are given a set A of objects to put on P1 and P2. We define as follows a binary relation  on A: x  y if the balance tilts towards x when we put x on P1 and y on P2. This relation is always asymmetric and transitive, but it is negatively transitive if and only if the two arms are of the same length. However we can observe it is always strongly transitive: x  y % z  t ⇒ x  t with y % z ⇔ z 6 y. In particular,  is an interval order (cf. [F]). Furthemore, suppose that A is endowed with a structure of N∗-set. Then the relation  verifies the following property of homothetic independence: x  y ⇔ (mx  my, ∀m ∈ N∗). We can continue to identify the properties satisfied by Â. That naturally brings us to introduce the notion of homothetic structure (cf. section 2). A homothetic structure is by definition a N∗-set A endowed with a binary relation  verifying five properties of compatibility, the most striking two being the homothetic independence 1 UMR 8628 du CNRS, Département de Mathématiques de l’Université de Paris-Sud, bâtiment 425, 91405 Orsay cedex France; e-mail: [email protected] 2 Universitat Pompeu Fabra, Departament d’Economia i Empresa, Ramon Trias Fargas 25-27, 08005-Barcelona (Espanya); e-mail: [email protected]
منابع مشابه
Generalized homothetic biorders
In this paper, we study the binary relations R on a nonempty N-set A which are hindependent and h-positive (cf. the introduction below). They are called homothetic positive orders. Denote by B the set of intervals of R having the form [r,+∞[ with 0 < r ≤ +∞ or ]q,∞[ with q ∈ Q≥0. It is a Q>0-set endowed with a binary relation > extending the usual one on R>0 (identified with a subset of B via t...
متن کاملBiased Quantitative Measurement of Interval Ordered Homothetic Preferences
We represent interval ordered homothetic preferences with a quantitative homothetic utility function and a multiplicative bias. When preferences are weakly ordered (i.e. when indifference is transitive), such a bias equals 1. When indifference is intransitive, the biasing factor is a positive function smaller than 1 and measures a threshold of indifference. We show that the bias is constant if ...
متن کاملEquilateral L-Contact Graphs
We consider L-graphs, that is contact graphs of axis-aligned L-shapes in the plane, all with the same rotation. We provide several characterizations of Lgraphs, drawing connections to Schnyder realizers and canonical orders of maximally planar graphs. We show that every contact system of L’s can always be converted to an equivalent one with equilateral L’s. This can be used to show a stronger v...
متن کاملThe behavior of the reliability functions and stochastic orders in family of the Kumaraswamy-G distributions
The Kumaraswamy distribution is a two-parameter distribution on the interval (0,1) that is very similar to beta distribution. This distribution is applicable to many natural phenomena whose outcomes have lower and upper bounds, such as the proportion of people from society who consume certain products in a given interval. In this paper, we introduce the family of Kumaraswamy-G distribution, an...
متن کاملHomothetic Triangle Contact Representations of Planar Graphs
In this paper we study the problem of computing homothetic triangle contact representations of planar graphs. Since not all planar graphs admit such a representation, we concentrate on meaningful subfamilies of planar graphs and prove that: (i) every two-terminal seriesparallel digraph has a homothetic triangle contact representation, which can be computed in linear time; (ii) every partial pla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 306 شماره
صفحات -
تاریخ انتشار 2006